Header logo is hi
8 results

2018


Thumb xl ar
Robust Visual Augmented Reality in Robot-Assisted Surgery

Forte, M. P.

Politecnico di Milano, July 2018 (mastersthesis)

Abstract
The broader research objective of this line of research is to test the hypothesis that real-time stereo video analysis and augmented reality can increase safety and task efficiency in robot-assisted surgery. This master’s thesis aims to solve the first step needed to achieve this goal: the creation of a robust system that delivers the envisioned feedback to a surgeon while he or she controls a surgical robot that is identical to those used on human patients. Several approaches for applying augmented reality to da Vinci Surgical Systems have been proposed, but none of them entirely rely on a clinical robot; specifically, they require additional sensors, depend on access to the da Vinci API, are designed for a very specific task, or were tested on systems that are starkly different from those in clinical use. There has also been prior work that presents the real-world camera view and the computer graphics on separate screens, or not in real time. In other scenarios, the digital information is overlaid manually by the surgeons themselves or by computer scientists, rather than being generated automatically in response to the surgeon’s actions. We attempted to overcome the aforementioned constraints by acquiring input signals from the da Vinci stereo endoscope and providing augmented reality to the console in real time (less than 150 ms delay, including the 62 ms of inherent latency of the da Vinci). The potential benefits of the resulting system are broad because it was built to be general, rather than customized for any specific task. The entire platform is compatible with any generation of the da Vinci System and does not require a dVRK (da Vinci Research Kit) or access to the API. Thus, it can be applied to existing da Vinci Systems in operating rooms around the world.

[BibTex]

2018

[BibTex]

2016


no image
Objective assessment of robotic surgical skill using instrument contact vibrations

D. Gomez, E., Aggarwal, R., McMahan, W., Bark, K., Kuchenbecker, K. J.

Surgical Endoscopy, 30(4):1419-1431, April 2016 (article)

[BibTex]

2016

[BibTex]

2013


no image
A Practical System For Recording Instrument Interactions During Live Robotic Surgery

McMahan, W., Gomez, E. D., Chen, L., Bark, K., Nappo, J. C., Koch, E. I., Lee, D. I., Dumon, K., Williams, N., Kuchenbecker, K. J.

Journal of Robotic Surgery, 7(4):351-358, 2013 (article)

[BibTex]

2013

[BibTex]


no image
Instrument Contact Vibrations are a construct-valid measure of technical skill in Fundamentals of Laparoscopic Surgery Training Tasks

Gomez, E. D., Aggarwal, R., McMahan, W., Koch, E., Hashimoto, D. A., Darzi, A., Murayama, K. M., Dumon, K. R., Williams, N. N., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Association for Surgical Education, Orlando, Florida, USA, April 2013, Oral presentation given by Gomez (inproceedings)

[BibTex]

[BibTex]

2012


no image
Construct Validity of Instrument Vibrations as a Measure of Robotic Surgical Skill

Gomez, E. D., Bark, K., Rivera, C., McMahan, W., Remington, A., Lee, D. I., Williams, N., Murayama, K., Dumon, K., Kuchenbecker, K. J.

Journal of the American College of Surgeons, 215(3):S119-120, Chicago, Illinois, USA, 2012, Oral presentation given by Gomez at the {\em American College of Surgeons (ACS) Clinical Congress} (article)

[BibTex]

2012

[BibTex]

2010


no image
VerroTouch: High-Frequency Acceleration Feedback for Telerobotic Surgery

Kuchenbecker, K. J., Gewirtz, J., McMahan, W., Standish, D., Martin, P., Bohren, J., Mendoza, P. J., Lee, D. I.

In Haptics: Generating and Perceiving Tangible Sensations, Proc. EuroHaptics, Part I, 6191, pages: 189-196, Lecture Notes in Computer Science, Springer, Amsterdam, Netherlands, July 2010, Oral presentation given by Kuchenbecker (inproceedings)

[BibTex]

2010

[BibTex]


no image
VerroTouch: High-Frequency Acceleration Feedback for Telerobotic Surgery

Kuchenbecker, K. J., Gewirtz, J., McMahan, W., Standish, D., Martin, P., Bohren, J., Mendoza, P. J., Lee, D. I.

Hands-on demonstration presented at EuroHaptics, Amsterdam, Netherlands, Amsterdam, Netherlands, July 2010 (misc)

[BibTex]

[BibTex]


no image
VerroTouch: A Vibrotactile Feedback System for Minimally Invasive Robotic Surgery

Kuchenbecker, K. J., Gewirtz, J., McMahan, W., Standish, D., Bohren, J., Martin, P., Wedmid, A., Mendoza, P. J., Lee, D. I.

In Proc. 28th World Congress of Endourology, 2010, PS8-14. Poster presentation given by Wedmid (inproceedings)

[BibTex]

[BibTex]