Header logo is hi

Department Talks

Vibrotactile Devices: Haptic Feedback to Enhance Sensation or Modify Gait

Talk
  • 27 January 2020 • 11:00 12:00
  • Nataliya Rokhmanova
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

Wearable sensing and feedback devices are becoming increasingly ubiquitous for measuring human movement in research laboratories, medical clinics, and in consumer goods. Advances in computation and miniaturization have enabled sensing for gait assessment; these technologies are then used in interventions to provide feedback that facilitates changes in gait or enhances sensory capabilities. This talk will focus on vibration as the primary method of providing feedback. I will discuss the use of vibrotactile arrays to communicate plantar foot pressure in users of lower-limb prosthetics, as a synthetic form of sensory feedback. Wearable vibrating units can also be used as a cue to retrain gait, and I will describe my preliminary work in gait retraining as a conservative treatment for knee osteoarthritis. This talk will cover the development and evaluation of these haptic devices and establish their impact within the greater context of clinical biomechanics.

Organizers: Katherine J. Kuchenbecker Ilona Jacobi

  • Dr. Katherine J. Kuchenbecker
  • MPI Campus in Tübingen - Lecture hall in the Max Planck House

Our scientific understanding of haptic interaction is still evolving, both because what you feel greatly depends on how you move, and because engineered sensors, actuators, and algorithms typically struggle to match human capabilities. Consequently, few computer and machine interfaces provide the human operator with high-fidelity touch feedback or carefully analyze the physical signals generated during haptic interactions, limiting their usability. The crucial role of the sense of touch is also deeply appreciated by researchers working to create autonomous robots that can competently manipulate everyday objects and safely interact with humans in unstructured environments.


Automatic Authoring of Haptic Content

IS Colloquium
  • 06 December 2019 • 11:00 12:00
  • Seungmoon Choi, Ph.D.
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2R4 (Werner-Köster lecture hall)

Providing rich and immersive physical experiences to users has become an essential component in many computer-interactive applications, where haptics plays a central role. However, as with other sensory modalities, modeling and rendering good haptic experiences with plausible physicality is a very demanding task in terms of the cost associated with modeling and authoring, not to mention the cost for development. No general and widely-used solutions exist yet for that; most designers and developers rely on their in-house programs, or even worse, manual coding. This talk will introduce the research conducted by the speaker in order to facilitate the authoring of haptic content. In particular, it will focus on automatic synthesis algorithms of vibrotactile effects and motion effects from audiovisual content, as well as some relevant issues in haptic perception.

Organizers: Katherine J. Kuchenbecker


From Fingertip Skin Mechanics to Dexterous Object Manipulation

IS Colloquium
  • 25 September 2019 • 13:00 14:00
  • Jean-Louis Thonnard
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

Fingertip skin friction plays a critical role during object manipulation. We will describe a simple and reliable method to estimate the fingertip static coefficient of friction (CF) continuously and quickly during object manipulation, and we will describe a global expression of the CF as a function of the normal force and fingertip moisture. Then we will show how skin hydration modifies the skin deformation dynamics during grip-like contacts. Certain motor behaviours observed during object manipulation could be explained by the effects of skin hydration. Then the biomechanics of the partial slip phenomenon will be described, and we will examine how this partial slip phenomenon is related to the subjective perception of fingertip slip.

Organizers: Katherine J. Kuchenbecker David Gueorguiev


  • Ernest (Ted) Gomez, MD, MTR
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

Surgery is a demanding activity that places a human life in the hands of others. However, innovations in minimally invasive surgery have physically separated surgeons' hands from their patients, creating the need for surgeons and their tools to develop both natural and artificial haptic intelligence. This lecture examines the essential role of haptic intelligence in skill development for laparoscopic and robotic surgery.

Organizers: Katherine J. Kuchenbecker


A New Framework to Understanding Biological Vision

IS Colloquium
  • 03 September 2019 • 11:00 12:00
  • Zhaoping Li
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

Visual attention selects a tiny amount of information that can be deeply processed by the brain, and gaze shifts bring the selected visual object to fovea, the center of the visual field, for better visual decoding or recognition of the selected objects. Therefore, central and peripheral vision should differ qualitatively in visual decoding, rather than just quantitatively in visual acuity.

Organizers: Katherine J. Kuchenbecker


  • Gunhyuk Park
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

Many hapticians have designed and implemented haptic effects to various user interactions. For several decades, hapticians have proved that the haptic feedback can improve multiple facets of user experience including task performance, analyzing and utilizing user perception, and substituting other sensory modalities. Among them, this talk introduces two representative rendering methods to provide vibrotactile effects to users: 2D phantom sensation that makes a user perceive illusive tactile perception by using multiple real vibrotactile actuators and vibrotactile dimensional reduction that reduces 3D acceleration data from real interactions to 1D vibrations for maximizing its realism and similarity.

Organizers: Katherine J. Kuchenbecker


  • Yasemin Vardar
  • 2P4 in Heisenbergstr. 3

Sign-Up! is a career-building program for female post-docs in the Max Planck Society. This program aims to prepare post-doctoral researchers for their future scientific careers by several interactive training sessions and networking activities. As a selected member of this program, I will summarize the workshops that I participated in this year. My talk will cover topics about success factors in scientific careers, career planning, professional communication and leadership, self-presentation, and research funding.

Organizers: Katherine J. Kuchenbecker


Anthropomorphism in Surgical Robotics and Wearable Technologies

IS Colloquium
  • 03 June 2019 • 11:00 12:00
  • Dr Antonia Tzemanaki
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

Over the past century, abdominal surgery has seen a rapid transition from open procedures to less invasive methods such as laparoscopy and robot-assisted minimally invasive surgery (R-A MIS), as they involve reduced blood loss, postoperative morbidity and length of hospital stay. Furthermore, R-A MIS has offered refined accuracy and more ergonomic instruments for surgeons, further minimising trauma to the patient. However, training surgeons in MIS procedures is becoming increasingly long and arduous, while commercially available robotic systems adopt a design similar to conventional laparoscopic instruments with limited novelty. Do these systems satisfy their users? What is the role and importance of haptics? Taking into account the input of end-users as well as examining the high intricacy and dexterity of the human hand can help to bridge the gap between R-A MIS and open surgery. By adopting designs inspired by the human hand, robotic tele-operated systems could become more accessible not only in the surgical domain but, beyond, in areas that benefit from user-centred design such as stroke rehabilitation, as well as in areas where safety issues prevent use of autonomous robots, such as assistive technologies and nuclear industry.

Organizers: Katherine J. Kuchenbecker


Human Factors Research in Minimally Invasive Surgery

IS Colloquium
  • 23 May 2019 • 11:00 12:00
  • Caroline G. L. Cao, Ph.D.
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

Health care is probably the last remaining unsafe critical system. A large proportion of reported medical errors occur in the hospital operating room (OR), a highly complex sociotechnical environment. As technology is being introduced into the OR faster than surgeons can learn to use them, surgical errors result from the unfamiliar instrumentation, increased motoric, perceptual and cognitive demands on the surgeons, as well as the lack of adequate training. Effective technology design for minimally invasive surgery requires an understanding of the system constraints of remote surgery, and the complex interaction between humans and technology in the OR. This talk will describe research activities in the Ergonomics in Remote Environments Laboratory at Wright State University, which address some of these human factors issues.

Organizers: Katherine J. Kuchenbecker


  • Hojin Lee
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

Haptic technologies in both kinesthetic and tactile aspects benefit a brand-new opportunity to recent human-machine interactive applications. In this talk, I, who believe in that one of the essential role of a researcher is pioneering new insights and knowledge, will present my previous research topics about haptic technologies and human-machine interactive applications in two branches: laser-based mid-air haptics and sensorimotor skill learning. For the former branch, I will introduce our approach named indirect laser radiation and its application. Indirect laser radiation utilizes a laser and a light-absorbing elastic medium to evoke a tapping-like tactile sensation. For the latter, I will introduce our data-driven approach for both modeling and learning of sensorimotor skills (especially, driving) with kinesthetic assistance and artificial neural networks; I call it human-like haptic assistance. To unify two different branches of my earlier studies for exploring the feasibility of the sensory channel named "touch", I will present a general research paradigm for human-machine interactive applications to which current haptic technologies can aim in future.

Organizers: Katherine J. Kuchenbecker