Haptic Intelligence

Understanding the Influence of Moisture on Fingerpad-Surface Interactions

2022

Ph.D. Thesis

hi


People frequently touch objects with their fingers. The physical deformation of a finger pressing an object surface stimulates mechanoreceptors, resulting in a perceptual experience. Through interactions between perceptual sensations and motor control, humans naturally acquire the ability to manage friction under various contact conditions. Many researchers have advanced our understanding of human fingers to this point, but their complex structure and the variations in friction they experience due to continuously changing contact conditions necessitate additional study. Moisture is a primary factor that influences many aspects of the finger. In particular, sweat excreted from the numerous sweat pores on the fingerprints modifies the finger's material properties and the contact conditions between the finger and a surface. Measuring changes of the finger's moisture over time and in response to external stimuli presents a challenge for researchers, as commercial moisture sensors do not provide continuous measurements. This dissertation investigates the influence of moisture on fingerpad-surface interactions from diverse perspectives. First, we examine the extent to which moisture on the finger contributes to the sensation of stickiness during contact with glass. Second, we investigate the representative material properties of a finger at three distinct moisture levels, since the softness of human skin varies significantly with moisture. The third perspective is friction; we examine how the contact conditions, including the moisture of a finger, determine the available friction force opposing lateral sliding on glass. Fourth, we have invented and prototyped a transparent in vivo moisture sensor for the continuous measurement of finger hydration. In the first part of this dissertation, we explore how the perceptual intensity of light stickiness relates to the physical interaction between the skin and the surface. We conducted a psychophysical experiment in which nine participants actively pressed their index finger on a flat glass plate with a normal force close to 1.5 N and then detached it after a few seconds. A custom-designed apparatus recorded the contact force vector and the finger contact area during each interaction as well as pre- and post-trial finger moisture. After detaching their finger, participants judged the stickiness of the glass using a nine-point scale. We explored how sixteen physical variables derived from the recorded data correlate with each other and with the stickiness judgments of each participant. These analyses indicate that stickiness perception mainly depends on the pre-detachment pressing duration, the time taken for the finger to detach, and the impulse in the normal direction after the normal force changes sign; finger-surface adhesion seems to build with pressing time, causing a larger normal impulse during detachment and thus a more intense stickiness sensation. We additionally found a strong between-subjects correlation between maximum real contact area and peak pull-off force, as well as between finger moisture and impulse. When a fingerpad presses into a hard surface, the development of the contact area depends on the pressing force and speed. Importantly, it also varies with the finger's moisture, presumably because hydration changes the tissue's material properties. Therefore, for the second part of this dissertation, we collected data from one finger repeatedly pressing a glass plate under three moisture conditions, and we constructed a finite element model that we optimized to simulate the same three scenarios. We controlled the moisture of the subject's finger to be dry, natural, or moist and recorded 15 pressing trials in each condition. The measurements include normal force over time plus finger-contact images that are processed to yield gross contact area. We defined the axially symmetric 3D model's lumped parameters to include an SLS-Kelvin model (spring in series with parallel spring and damper) for the bulk tissue, plus an elastic epidermal layer. Particle swarm optimization was used to find the parameter values that cause the simulation to best match the trials recorded in each moisture condition. The results show that the softness of the bulk tissue reduces as the finger becomes more hydrated. The epidermis of the moist finger model is softest, while the natural finger model has the highest viscosity. In the third part of this dissertation, we focused on friction between the fingerpad and the surface. The magnitude of finger-surface friction available at the onset of full slip is crucial for understanding how the human hand can grip and manipulate objects. Related studies revealed the significance of moisture and contact time in enhancing friction. Recent research additionally indicated that surface temperature may also affect friction. However, previously reported friction coefficients have been measured only in dynamic contact conditions, where the finger is already sliding across the surface. In this study, we repeatedly measured the initial friction before full slip under eight contact conditions with low and high finger moisture, pressing time, and surface temperature. Moisture and pressing time both independently increased finger-surface friction across our population of twelve participants, and the effect of surface temperature depended on the contact conditions. Furthermore, detailed analysis of the recorded measurements indicates that micro stick-slip during the partial-slip phase contributes to enhanced friction. For the fourth and final part of this dissertation, we designed a transparent moisture sensor for continuous measurement of fingerpad hydration. Because various stimuli cause the sweat pores on fingerprints to excrete sweat, many researchers want to quantify the flow and assess its impact on the formation of the contact area. Unfortunately, the most popular sensor for skin hydration is opaque and does not offer continuous measurements. Our capacitive moisture sensor consists of a pair of inter-digital electrodes covered by an insulating layer, enabling impedance measurements across a wide frequency range. This proposed sensor is made entirely of transparent materials, which allows us to simultaneously measure the finger's contact area. Electrochemical impedance spectroscopy identifies the equivalent electrical circuit and the electrical component parameters that are affected by the amount of moisture present on the surface of the sensor. Most notably, the impedance at 1 kHz seems to best reflect the relative amount of sweat.

Author(s): Saekwang Nam
Year: 2022
Month: October

Department(s): Haptic Intelligence
Research Project(s): Finger-Surface Contact Mechanics in Diverse Moisture Conditions
Bibtex Type: Ph.D. Thesis (phdthesis)
Paper Type: Thesis

Address: Tübingen, Germany
School: University of Tübingen

Degree Type: PhD
DOI: 10.15496/publikation-74314
Note: Department of Computer Science

BibTex

@phdthesis{Nam22-PHD-Moisture,
  title = {Understanding the Influence of Moisture on Fingerpad-Surface Interactions},
  author = {Nam, Saekwang},
  school = {University of Tübingen},
  address = {Tübingen, Germany},
  month = oct,
  year = {2022},
  note = {Department of Computer Science},
  doi = {10.15496/publikation-74314},
  month_numeric = {10}
}