Haptic Intelligence

Reconstructing Signing Avatars from Video Using Linguistic Priors

2023

Conference Paper

hi

ps


Sign language (SL) is the primary method of communication for the 70 million Deaf people around the world. Video dictionaries of isolated signs are a core SL learning tool. Replacing these with 3D avatars can aid learning and enable AR/VR applications, improving access to technology and online media. However, little work has attempted to estimate expressive 3D avatars from SL video; occlusion, noise, and motion blur make this task difficult. We address this by introducing novel linguistic priors that are universally applicable to SL and provide constraints on 3D hand pose that help resolve ambiguities within isolated signs. Our method, SGNify, captures fine-grained hand pose, facial expression, and body movement fully automatically from in-the-wild monocular SL videos. We evaluate SGNify quantitatively by using a commercial motion-capture system to compute 3D avatars synchronized with monocular video. SGNify outperforms state-of-the-art 3D body-pose- and shape-estimation methods on SL videos. A perceptual study shows that SGNify's 3D reconstructions are significantly more comprehensible and natural than those of previous methods and are on par with the source videos. Code and data are available at sgnify.is.tue.mpg.de.

Author(s): Maria-Paola Forte and Peter Kulits and Chun-Hao Paul Huang and Vasileios Choutas and Dimitrios Tzionas and Katherine J. Kuchenbecker and Michael J. Black
Book Title: IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR)
Pages: 12791--12801
Year: 2023
Month: June

Department(s): Haptic Intelligence, Perceiving Systems
Bibtex Type: Conference Paper (inproceedings)
Paper Type: Conference

DOI: 10.1109/CVPR52729.2023.01230
Event Name: CVPR 2023
Event Place: Vancouver

State: Published

Links: pdf
arXiv
project
code

BibTex

@inproceedings{Forte23-CVPR-SGNify,
  title = {Reconstructing Signing Avatars from Video Using Linguistic Priors},
  author = {Forte, Maria-Paola and Kulits, Peter and Huang, Chun-Hao Paul and Choutas, Vasileios and Tzionas, Dimitrios and Kuchenbecker, Katherine J. and Black, Michael J.},
  booktitle = {IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  pages = {12791--12801},
  month = jun,
  year = {2023},
  doi = {10.1109/CVPR52729.2023.01230},
  month_numeric = {6}
}