Haptic Intelligence


2021


no image
Robotic Surgery Training in AR: Multimodal Record and Replay

Krauthausen, F.

pages: 1-147, University of Stuttgart, Stuttgart, May 2021, Study Program in Software Engineering (mastersthesis)

[BibTex]

2021

[BibTex]


no image
An electric machine with two-phase planar Lorentz coils and a ring-shaped Halbach array for high torque density and high-precision applications

Nguyen, V., Javot, B., Kuchenbecker, K. J.

(EP21170679.1), April 2021 (patent)

Abstract
An electric machine, in particular a motor or a generator, comprising a rotor and a stator, wherein the rotor comprises a planar, ring-shaped rotor base element and the stator comprises a planar ring-shaped stator base element, wherein the rotor base element and the stator base element are aligned along an axial axis (Z) of the electric machine, wherein a plurality of magnet elements are arranged around the circumference of the ring-shaped rotor base element forming a Halbach magnet-ring assembly, wherein the Halbach magnet-ring assembly generates a magnetic field (BR) with axial and azimuthal components, wherein a plurality of coils are arranged around the circumference (C) of the ring-shaped stator base element.

Project Page [BibTex]


Sensor arrangement for sensing forces and methods for fabricating a sensor arrangement and parts thereof
Sensor arrangement for sensing forces and methods for fabricating a sensor arrangement and parts thereof

Sun, H., Martius, G., Kuchenbecker, K. J.

(PCT/EP2021/050230), Max Planck Institute for Intelligent Systems, Max Planck Ring 4, January 2021 (patent)

Abstract
The invention relates to a vision-based haptic sensor arrangement for sensing forces, to a method for fabricating a top portion of a sensor arrangement, and to a method for fabricating a sensor arrangement.

Project Page [BibTex]

Project Page [BibTex]


Method for force inference, method for training a feed-forward neural network, force inference module, and sensor arrangement
Method for force inference, method for training a feed-forward neural network, force inference module, and sensor arrangement

Sun, H., Martius, G., Kuchenbecker, K. J.

(PCT/EP2021/050231), Max Planck Institute for Intelligent Systems, Max Planck Ring 4, January 2021 (patent)

Abstract
The invention relates to a method for force inference of a sensor arrangement for sensing forces, to a method for training a feed-forward neural network, to a force inference module, and to a sensor arrangement.

Project Page [BibTex]


Method for Force Inference of a Sensor Arrangement, Methods for Training Networks, Force Inference Module and Sensor Arrangement
Method for Force Inference of a Sensor Arrangement, Methods for Training Networks, Force Inference Module and Sensor Arrangement

Sun, H., Martius, G., Lee, H., Spiers, A., Fiene, J.

(PCT/EP2020/083261), Max Planck Institute for Intelligent Systems, Max Planck Ring 4, November 2020 (patent)

Abstract
The present invention relates to a method for force inference of a sensor arrangement, to related methods for training of networks, to a force inference module for performing such methods, and to a sensor arrangement for sensing forces. When developing applications such as robots, sensing of forces applied on a robot hand or another part of a robot such as a leg or a manipulation device is crucial in giving robots increased capabilities to move around and/or manipulate objects. Known implementations for sensor arrangements that can be used in robotic applications in order to have feedback with regard to applied forces are quite expensive and do not have sufficient resolution. Sensor arrangements may be used to measure forces. However, known sensor arrangements need a high density of sensors to provide for a high special resolution. It is thus an object of the present invention to provide for a method for force inference of a sensor arrangement and related methods that are different or optimized with regard to the prior art. It is a further object to provide for a force inference module to perform such methods. It is a further object to provide for a sensor arrangement for sensing forces with such a force inference module.

Project Page [BibTex]

2019


no image
Haptic Reality: Novel Interfacing for Informed Assembly Systems

Tashiro, N., Faulkner, R., Melnyk, S., Rosales, T.

University of Stuttgart, 2019 (mastersthesis)

[BibTex]

2019

[BibTex]

2018


Robust Visual Augmented Reality in Robot-Assisted Surgery
Robust Visual Augmented Reality in Robot-Assisted Surgery

Forte, M.

Politecnico di Milano, Milan, Italy, July 2018, Department of Electronic, Information, and Biomedical Engineering (mastersthesis)

Abstract
The broader research objective of this line of research is to test the hypothesis that real-time stereo video analysis and augmented reality can increase safety and task efficiency in robot-assisted surgery. This master’s thesis aims to solve the first step needed to achieve this goal: the creation of a robust system that delivers the envisioned feedback to a surgeon while he or she controls a surgical robot that is identical to those used on human patients. Several approaches for applying augmented reality to da Vinci Surgical Systems have been proposed, but none of them entirely rely on a clinical robot; specifically, they require additional sensors, depend on access to the da Vinci API, are designed for a very specific task, or were tested on systems that are starkly different from those in clinical use. There has also been prior work that presents the real-world camera view and the computer graphics on separate screens, or not in real time. In other scenarios, the digital information is overlaid manually by the surgeons themselves or by computer scientists, rather than being generated automatically in response to the surgeon’s actions. We attempted to overcome the aforementioned constraints by acquiring input signals from the da Vinci stereo endoscope and providing augmented reality to the console in real time (less than 150 ms delay, including the 62 ms of inherent latency of the da Vinci). The potential benefits of the resulting system are broad because it was built to be general, rather than customized for any specific task. The entire platform is compatible with any generation of the da Vinci System and does not require a dVRK (da Vinci Research Kit) or access to the API. Thus, it can be applied to existing da Vinci Systems in operating rooms around the world.

[BibTex]

2018

[BibTex]

2017


no image
How Should Robots Hug?

Block, A. E.

University of Pennsylvania, May 2017, Robotics Degree Program (mastersthesis)

Abstract
A hug is one of the most basic ways humans can express affection. As hugs are so common, a natural progression of robot development is to have robots one day hug humans as seamlessly as these intimate human-human interactions occur. This project’s purpose is to evaluate human responses to different robot hugging techniques and behaviors. Specifically, we aim to test the hypothesis that a warm, soft, touch-sensitive PR2 humanoid robot can provide humans with satisfying hugs by matching both their hugging pressure and their hugging duration. Thirty participants experienced and evaluated twelve hugs with the robot, divided into three randomly ordered trials that focused on physical robot characteristics and nine randomly ordered trials with varied hug pressure and timing. We found that people prefer soft, warm hugs over hard, cold hugs. Furthermore, users prefer hugs that physically squeeze them and release immediately when they are ready for the hug to end. When comparing responses to a survey taken at the start and end of the hugging session, we found that after the experiment users felt significantly more understood by the robot, trusted it more, and thought it was easier to use than they initially anticipated.

[BibTex]

2017

[BibTex]