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Abstract: In high-precision motion systems, set-point tracking often comes with the problem
of overshoot, hence poor settling behavior. To avoid overshoot, PD control (thus without using
an integrator) is preferred over PID control. However, PD control gives rise to steady-state error
in view of the constant disturbances acting on the system. To deal with both overshoot and
steady-state error, a sliding mode controller with saturated integrator is studied. For large servo
signals the controller is switched to PD mode as to constrain the integrator buffer and therefore
the overshoot. For small servo signals the controller switches to PID mode as to avoid steady-
state error. The tuning of the switching parameters will be done automatically with the aim to
optimize the settling behavior. The sliding mode controller will be tested on a high-precision
motion system.

Keywords: Motion systems, machine-in-the-loop optimization, self-tuning, sliding mode
control, wafer scanners.

1. INTRODUCTION

Wafer scanners and their high-precision motion systems
are used in the semiconductor industry for the produc-
tion of integrated circuits (Butler, 2011). These systems
need to be controlled to meet the demands on wafer
position accuracy and throughput. Under proportional-
integral-derivative (PID) control this generally poses the
following problem. The integrator used to compensate for
the unknown static disturbances gives rise to poor settling
behavior (Seshagiri and Khalil, 2005a). This is because
the integrator buffer created prior to scanning induces
overshoot (or undershoot) at the beginning of the scanning
interval. A solution to this problem would be to use PD
control, but with the disadvantage that static disturbances
induce steady-state errors in the scanning interval.

To deal with this trade-off the merits of sliding mode con-
trol will be studied (Hung et al., 1993; Menon and Khalil,
2010; Pisano and Usai, 2011; Seshagiri and Khalil, 2005b;
Singh and Khalil, 2005; Young et al., 1999). More specif-
ically, from Lee et al. (2011) and Nonaka and Sugizaki
(2011) a saturated integrator design, or so-called integral
sliding mode control, will be adopted. Instead of studying
(for example) higher-order sliding mode control schemes
like the twisting or super twisting algorithms studied
by Salgado-Jiménez and Jouvencelet (2003); Janardhanan
(2006), integral sliding mode control is studied because
of its clear physical interpretation. For large servo signals,
sufficiently removed from the sliding surface, the controller
will operate in PD mode. This limits the integrator buffer,
i.e. the overshoot/undershoot. Near the sliding surface, the
controller operates in PID mode with the aim to avoid
steady-state error.

Different from the designs in for example Boiko (2011);
Eker (2006); Lee et al. (2011); Nonaka and Sugizaki (2011);
Sam et al. (2004), the controller tunings in PD mode
are done in frequency domain using manual loop shap-
ing. Frequency-domain tunings directly link the control
design to the physical understanding of the stage dynamics
(resonances), closed-loop performance (bandwidths), and
robust stability of the linear part of the closed-loop system
(stability margins). The main contribution of this paper,
however, are the tunings of the saturated integrator: the
gain and the saturation length. This is done in time do-
main using a self-tuning algorithm, see also Hung et al.
(2007); Kuo et al. (2007); Patete et al. (2008) for differ-
ent approaches. The idea behind self-tuning is twofold.
On the one hand, the nonlinear controller tunings do
not follow from straightforward design and performance
arguments (Nazrulla and Khalil, 2011). Self-tuning thus
avoids trial-and-error in the tuning process. On the other
hand, unknown disturbances and plant uncertainty gen-
erally require machine-specific tunings. Because the self-
tuning algorithm combines model knowledge with time-
series data, this requirement is automatically met.

The remainder of the paper is organized as follows. In
Section II, a model of the motion system dynamics will
be presented whereas in Section III, the sliding mode
control design based on these dynamics will be discussed.
In Section IV, tuning of the sliding mode controller will
be considered. This involves self-tuning of the saturated
feedback controller parameters in time-domain. In Section
V, performance will be assessed through simulation and
experiment. In Section VI, a summary of the main conclu-
sions and observations will be given.
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2. MODEL OF THE MOTION SYSTEM DYNAMICS

In wafer scanners, the scanning process is usually con-
ducted with two simultaneously operating wafer position-
ing modules: one that is being exposed, and one that is
being measured; see Shieh and Huang (2006); Xu and
Li (2009) for piezoelectric motion systems in a similar
control context. The servo control problem considered in
this paper involves the exchange of these modules from
measure to expose side and vice versa. Since the exchange
interrupts the exposure process, minimizing settling times
during this exchange directly aids to improved system
performance in terms of wafer throughput.

2.1 Wafer Stage

A graphical representation of a wafer positioning module
is shown in Fig.1. The module is part of an H-bridge struc-
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Fig. 1. A wafer positioning module.

ture which can move freely in x-direction along its center
beam. In y-direction the center beam takes part in the mo-
tion, thereby inducing position-dependent behavior. Atop
the course positioning module, a fine-positioning module
is mounted which supports the wafer to be measured and
exposed.

2.2 State-Space Model

For given time t and sampling time ∆T assume the dynam-
ics of the positioning module in y-direction to be presented
by the following (simplified and time-discretized) state-
space model:

xp(t+∆T ) = Apxp(t) +Bpu(t)

y(t) = Cpxp(t),
(1)

with state vector xp(t) ∈ R8, Ap ∈ R8×8, and Bp, C
T
p ∈

R8, see (2) for the matrices; u(t) ∈ R represents a force
applied to the system, whereas y(t) ∈ R represents the
measured displacement resulting from this force.

2.3 Model Validation

The validity of the model in (1) and (2), which in frequency
domain is given by:

Y (s) = P(s)U(s), (3)

with Y (s), U(s) ∈ C the Laplace transforms of y(t), u(t) ∈
R, respectively, is shown in Fig.2. In Bode representation,
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Fig. 2. Bode representation of the wafer positioning mod-
ule P(jω).

a fair correspondence is obtained between the 8th order
model and frequency response function measurements of
P(jω) ∈ C. At low frequencies, double integrator behavior
is shown, i.e. the positioning module can be characterized
by a simple mass model. Beyond 60 Hz, however, the
dynamics become more complex. For example, around
200 Hz the positioning module is largely decoupled from
the actuators. Beyond 700 Hz, closed-loop identification
induces poor measurement results. The same holds true
below 3 Hz. As mentioned in Section 2.1, the system (by
design) is position-dependent. Measuring P at different
positions yields different characteristics. In minimizing
settling times, it therefore makes sense to study integral
sliding mode control as a means of nonlinear feedback
which has the potential of adding position-dependent
disturbance rejection properties to the closed-loop system.

3. INTEGRAL SLIDING MODE CONTROL DESIGN

For integral sliding mode control design we introduce
the block diagram representation of Fig.3. By itself, the
representation gives a clear physical interpretation of the
controller structure. The wafer positioning module P ,
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Fig. 3. Block diagram of the sliding mode control configu-
ration.

which is (directly) subjected to input disturbances fd =

IFAC Mechatronics '13
April 10-12, 2013. Hangzhou, China

14



Ap =



















6.164 −1.056 4.204 10−1 −1.059 10−1 3.431 10−2 −1.383 10−2 6.253 10−3 −1.202 10−3

16 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0.5 0 0
0 0 0 0 0 0 0.5 0



















Bp =
[

3.815 10−6 0 0 0 0 0 0 0
]T

Cp =
[

2.897 10−6 −7.012 10−7 −4.721 10−8 1.55 10−7 −3.628 10−9 −8.732 10−8 9.241 10−9 1.30 10−7
]

(2)

fd(t) ∈ R and (indirectly) to output disturbances d =
d(t) ∈ R, is controlled by a sliding mode controller which
consists of three parts: a feedforward part uff = uff(t) ∈ R

with feedforward controller Cff , a linear feedback part
ufb = ufb(t) ∈ R with feedback controller Cfb, and a
saturated feedback part usmc = usmc(t) ∈ R; see Amer
et al. (2011); Tsuruta et al. (2011); Xi et al. (2010) for
other designs but with a comparable structure.

For saturated feedback let us first adopt the control design
from Nonaka and Sugizaki (2011) and then adapt this
design toward the specific needs of the considered stage
application. In Nonaka and Sugizaki (2011) the input
signal σ = σ(t) ∈ R is mapped onto a saturation function:
σ(t) 7→ φ(σ(t)), giving

usmc(t) = φ(σ(t)) = κsat(σ(t)), (4)

κ ≥ 0 a gain, and

sat(σ(t))
def
=







σ(t)

ǫ
, if|σ(t)| ≤ ǫ,

sign(σ(t)), otherwise,
(5)

with ǫ > 0. The input signal σ = σ(t) ∈ R reads:

σ(t) =
de(t)

dt
+ γ

∫ t

0

ufb(τ)dτ, (6)

with γ > 0 a gain and the error signal e = e(t) ∈ R:

e(t) = r(t) − y(t)− d(t). (7)

Now assume that P is a double integrator plant, which is
partly validated in Fig.2, or

y(t) =
1

m

∫∫

R

u(τ)dτ, (8)

with region R = [0, t]× [0, t] and mass m > 0. Moreover,
let Cfb satisfy:

ufb(t) = kpe(t) + kv
de(t)

dt
, (9)

with gain kp for the proportional term and gain kv for the
velocity term, respectively, whereas Cff satisfies:

uff(t) = m
d2r(t)

dt2
. (10)

Fig.3 thus shows that Cff should match with the inverse
plant characteristics P−1, Cfb gives a ”PD” controller con-
tribution, and depending on φ(·) an extra ”PID” controller
contribution will be applied to the system.

Stability of the control design follows from Lyapunov argu-
ments. Namely for initial conditions: e(0) = de(0)/dt = 0,
it follows from Fig.3 and using (9) that:

σ(t) = γkp

∫ t

τ=0

e(τ)dτ + γkve(t) +
de(t)

dt
. (11)

Substitution of (8) in (7) and considering the second
derivatives it then follows for γ = 1/m and

u(t) = uff(t) + ufb(t) + usmc(t) + fd(t), (12)

see Fig.3, that dσ(t)/dt can be written as

dσ(t)

dt
= − κ

m
sat(σ(t)) − d2d(t)

dt2
− 1

m
fd(t). (13)

By defining the Lyapunov function candidate:

V (t) = σ2(t), (14)

which for σ(t) 6= 0 is positive definite, it follows that:

dV (t)

dt
= 2

dσ(t)

dt
σ(t)

= −2κ

m
sat(σ(t))σ(t) − 2

d2d(t)

dt2
σ(t) − 2

m
fd(t)σ(t).

(15)

If the disturbances acting on the system are uniformly
bounded, or

∣

∣

∣

∣

d2d(t)

dt
+

1

m
fd(t)

∣

∣

∣

∣

<
κ

m
, t ∈ [0,∞), (16)

which requires the gain κ to be chosen large enough to
suppress these disturbances, it follows for |σ(t)| > ǫ and
substitution of (5) that:

dV (t)

dt
≤ −

κ

m
|σ(t)| +

∣

∣

∣

∣

d2d(t)

dt
+

1

m
fd(t)

∣

∣

∣

∣

|σ(t)| < 0, (17)

which leaves |σ(t)| ≤ ǫ a positively invariant set to which
all solutions σ(t) ∈ R converge.

For stage control, the sliding mode control design de-
scribed above needs modification. On the one hand, the
feedforward controller Cff in (10) is generally a too sim-
plified representation of the inverse plant dynamics P in
Fig.2. Namely P is dominated by higher-order dynamics
that should be addressed as to improve the effectiveness
of the inertia-based feedforward controller in (10). On the
other hand, closed-loop stability in the case of φ(σ) =
0, ∀σ ∈ R, i.e. with ”PD” control only, is not necessarily
satisfied for P in Fig.2 (Boiko, 2011; Daly and Wang, 2009;
Zeinali and Notash, 2010). For example, Fig.2 shows much
more phase lag then is being described by (8).

The feedforward controller Cff resulting from (10) is mod-
ified as follows. Because the reference signal r(t) is known
in advance, its second time derivative a(t) is known in
advance too, such that:
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uff(t) = ma(t). (18)

Using (18) avoids unnecessary time-delay in the discrete-
time computation of the feedforward compensation uff(t) ∈
R. Unfortunately, uff(t) needs to be time-delayed anyway
in order to synchronize with the forces ufb(t), usmc(t) ∈ R,
or:

Uff(s) = Cff(s)A(s), Cff(s) = m exp−δ∆Ts, (19)

with Uff(s), A(s) ∈ C the Laplace transforms of uff(t),
a(t) ∈ R, respectively, δ = 3, and ∆T = 1/5000 s. In view
of the position-dependent dynamics of the stage system,
modifications toward higher-order feedforward control are
not considered in this paper. In fact, the presence of
position-dependent dynamics forms the main motivation
to use integral sliding mode control as a means to improve
upon the settling behavior of the stage system.

The feedback controller Cfb(s) ∈ C in:

Ufb(s) = Cfb(s)E(s), (20)

with Ufb(s), E(s) ∈ C the Laplace transforms of ufb(t),
e(t) ∈ R, respectively, is modified by manual loop-shaping.
In addition to (9) with kp = 106 Nm−1 and kv =

kp/(24π) Nsm−1, three loop-shaping filters are added: a
second-order low-pass filter with a cut-off frequency at 120
Hz and two second-order notch filters tuned around the
plant resonances at 115 and 200 Hz, see also Fig.2. Note
that output feedback is used instead of state feedback.
For the considered stage application, output feedback
is the most logical choice because of the limited set of
actuators and sensors used for control. Moreover, the PD-
like controller Cfb(s) ∈ C with extra second-order filters
reflects a clear physical understanding in tuning given the
suppression of plant resonances (notch filters) and high-
frequency noise attenuation (low-pass filter).

In time-domain, the controller is given by the state-space
model:

xc(t+∆T ) = Acxc(t) +Bce(t)

ufb(t) = Ccxc(t),
(21)

with state vector xc(t) ∈ R8, Ac ∈ R8×8, and Bc, C
T
c ∈ R8;

see (22) for the matrices.

The need for loop shaping is shown in the Nyquist plots
of Fig.4. By depicting the measured open-loop charac-
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Fig. 4. Nyquist plot of the openloop Cfb(jω)P(jω).

teristics, Cfb(jω)P(jω) ∈ C, either with (9) in black or
with (21) in red, it can be seen that robust stability and
performance of the linear part of the sliding mode control
design is obtained for (21); see Kuo et al. (2008) for an
adaptive approach toward the controller tunings. Fig.4
also shows that (9) renders the sliding mode control design
much less robust, hence the need for loop shaping.

Having tuned the feedforward part and the linear feedback
part in Fig.3 using frequency domain techniques, the
(nonlinear) saturated feedback part will be tuned in time
domain. This is because tunings of the parameters of the
saturation function do not seriously affect the stability
properties of the closed-loop system: for large enough input
σ(t) ∈ R, the system falls back onto the ”stable” PD
mode. These tunings, however, do influence closed-loop
performances, which differ from machine to machine and
therefore can best be tuned in time-domain using data
from said machines.

4. INTEGRAL SLIDING MODE CONTROL TUNING

With integral sliding mode control tuning we mean self-
tuning of the parameters κ, ǫ ∈ R of the saturation
function φ(·) in (4). Tuning of the controller parameters
is essential in terms of achieving tracking performance
(Nazrulla and Khalil, 2011; Tannuri et al., 2010). For
this purpose, the data-driven approach from Heertjes and
Nijmeijer (2012) is followed that explicitly addresses the
saturation nonlinearity. In this approach, the lifted system
description from Bamieh et al. (1991) provides the means
to compute the gradient error signals from the sampled
data obtained from a particular experiment. These gra-
dient error signals are used to compute an update of the
controller parameters (by Newton optimization) for the
next experiment. In so doing, machine specific tunings will
be obtained inducing dedicated machine performances.

More specifically, the aim in self-tuning is to iteratively
find the set of switching control parameters popt =
[κopt, ǫopt]

T that minimizes the performance-relevant servo
error signals e(t) ∈ R in the time interval t ∈ [t1, t2], or

popt
def
= argmin

p

∫ t2

t1

e2(t)dt, (23)

with p = pk = [κk, ǫk]
T and k ∈ N+ the iteration number.

To find popt, consider the Gauss-Newton scheme 1 :

pk+1 = pk + β
(

pk
Tpk

)−1
pk

Tek, (24)

where 0 < β ≤ 1 is a damping coefficient, pk ∈ Rn×2

contains the n-sampled gradient error signals:

pk =

[

∂ek
∂κk

∂ek
∂ǫk

]

, (25)

and ek ∈ Rn represents the data-sampled error signal:

ek = [ek(t1) ek(t1 +∆T ) . . . ek(t2)]
T
, (26)

with t2 = t1 + (n − 1)∆T and the subscript k denoting
the k-th realization of the considered signal or parameter.
In (24), ek ∈ Rn can directly be obtained from time-series
measurement or simulation. This does not hold true for the
gradient error signals in (25). To obtain these gradients,
the system of Fig.3 is split up in two parts: a part
from output usmc(t) to input σ(t) which consists of linear
dynamics only, and a part containing the nonlinearity, i.e.
the saturation function φ(·) in (4).

The linear part of the system follows from (19), (20), and:

1 In the case that the Gauss-Newton scheme induces numerical con-
ditioning problems in computing the (approximative) Hessian, the
Levenberg-Marquardt scheme may prove beneficial. As a drawback,
the latter often associates with reduced convergence rates.
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Ac =



















7.336 −7.385 10−1 1.705 10−1 −9.882 10−2 3.679 10−2 −1.718 10−2 9.207 10−3 −8.667 10−3

32 0 0 0 0 0 0 0
0 8 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0.5 0 0
0 0 0 0 0 0 0.125 0



















Bc = [ 256 0 0 0 0 0 0 0 ]
T

Cc =
[

2.511 102 −4.477 101 1.361 101 −9.133 3.656 −1.752 9.389 10−1 −8.838 10−1
]

(22)

Σ(s) =
γUfb(s)

s
+ sE(s) (27a)

E(s) = R(s)−D(s)− Y (s) (27b)

Y (s) = P(s)U(s) (27c)

U(s) = Fd(s) + Uff(s) + Ufb(s) + Usmc(s), (27d)

with Σ(s) ∈ C the Laplace transform of σ(t) ∈ R. By
substitution, it can be derived that:

Σ(s) = Smod(s)(R(s)−D(s))

− Sp
mod(s)(Uff(s) + Fd(s) + Usmc(s)),

(28)

with the modified (closed-loop) sensitivity and process
sensitivity function, respectively, defined as:

Smod(s) =
γCfb(s) + s2

s+ sP(s)Cfb(s)
Sp
mod(s) = P(s)Smod(s).

(29)

It is assumed that Smod(s),Sp
mod(s) ∈ C are strictly proper

transfer functions, which is reasonable for the considered
double integrator-based motion systems. Since Cfb ∈ C is
chosen to stabilize P(s) ∈ C, Smod,Sp

mod are stable by
design. In state-space representation, Eq.(28) reads:

xd(t+∆T ) = Adxd(t) +Bd,1v(t)−Bd,2(w(t) + usmc(t))

σ(t) = Cdxd(t),
(30)

with state vector xd = xd(t) ∈ Rm, Ad ∈ Rm×m Hurwitz,
Bd,1, Bd,2, C

T
d ∈ Rm, the pairs (Ad, Bd,1) and (Ad, Bd,2)

being state controllable, the pair (Ad, Cd) being state
observable, and v(t) = r(t) − d(t), w(t) = uff(t) + fd(t).

For xd(t1) = 0, Eq.(30) can be put in lifted form:







σk(t1)
...

σk(t2)






=

Smod
︷ ︸︸ ︷













0 · · · 0

CdBd,1

...
...

. . .
. . .

CdA
n−2
d Bd,1 · · · CdBd,1 0



















vk(t1)
...

vk(t2)







−

S
p

mod
︷ ︸︸ ︷













0 0 · · · 0

CdBd,2

...
...

. . .
. . . 0

CdA
n−2
d Bd,2 · · · CdBd,2 0



















wk(t1) + usmc,k(t1)
...

wk(t2) + usmc,k(t2)






,

(31)

which gives rise to the following algebraic expression:

σk = −S
p
modusmc,k + Smodvk − S

p
modwk, (32)

with the data-sampled signals σk = [σk(t1) . . . σk(t2)]
T,

vk = [vk(t1) . . . vk(t2)]
T, wk = [wk(t1) . . . wk(t2)]

T ∈ Rn,
σk, vk, and wk being k-th realizations of the signals σ, v,
and w, respectively, and Toeplitz matrices: Smod,S

p
mod ∈

Rn×n, representing the modified sensitivity and process
sensitivity dynamics.

For the nonlinear part of the system write:

usmc,k = φ(σk), (33)

with the saturation-based nonlinearity decomposed into:

φ(σk) =
κk

ǫk
φ1(σk)σk + κkφ2(σk), (34)

φ1(σk) ∈ Rn×n a positive semi-definite diagonal matrix:

φ1(σk)[i, i] =

{

1, if|σk(t1 + (i − 1)∆T )| ≤ ǫk,

0, otherwise,
(35)

for i ∈ {1 . . . n} and φ2(σk) ∈ Rn given by:

φ2(σk)[i] =

{

0, if|σk(t1 + (i− 1)∆T )| ≤ ǫk,

sign(σk(t1 + (i− 1)∆T )), otherwise.
(36)

Combining (32), (33), (34) and using the linear relation
from e(t) to σ(t) (see Fig.3) which in Laplace domain
follows from substitution of (20) in (27a), it follows (after
some algebra 2 ) that:

∂ek
∂κk

= −A(φ1(σk)σk + ǫkφ2(σk))

∂σk

∂ǫk
=

κk

ǫk
Aφ1(σk)σk,

(37)

with
A = (I + κSp

modφ1(σk))
−1Sp, (38)

and Sp ∈ Rn×n a Toeplitz matrix similar to S
p
mod ∈ Rn×n

but based on the unmodified process sensitivity function:

Sp(s) =
P(s)

1 + P(s)Cfb(s)
. (39)

5. PERFORMANCE ASSESSMENT

Performance of the (modified) sliding mode control design
from Section 3 is assessed in two parts. Firstly, settings for
the saturation parameters κ and ǫ are found from simula-
tions using the self-tuning procedure described in Section
4, and, secondly, control performance is demonstrated for
these settings via measurement results.

2 The main property used in the derivation of (37) is given by the
fact that σk(i)∂φ1

(σk)[i, i]/∂ǫk + ǫk∂φ2
(σk)[i]/∂ǫk = 0.
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Using the models and algorithms from the previous sec-
tions, the results from parameter optimization are sum-
marized in Fig.5. It can be seen that the squared error
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Fig. 5. Cost function evaluation in (23) from time-series
simulations with κ ∈ {0, 150} and ǫ ∈ {0.001, 0.02}.

evaluation from (23) in the performance interval t ∈ [t1, t2]
with t1 = 0 s and t2 = 0.15 s (see also Fig.6) yields a small
region of minima with different combinations of κ and ǫ.
It is clear that κ needs to be large enough to cope with the
(static) disturbances as stated in (16). Moreover beyond
a threshold value of κ ≈ 25 both κ and 1/ǫ effectively
represent controller gain and thus are interchangeable:
larger values for κ correspond to smaller values for 1/ǫ
in maintaining roughly the same control performance.
It is also clear that best performance is obtained with
the saturated integrator rather than operating in either
”PD” or ”PID” mode. For ǫ → 0, so if (5) tends to a
signum function, sliding mode control induces deteriorated
performance (chattering) in the considered metric; see
Laghrouche et al. (2007) regarding a solution based on
higher-order sliding mode control. Fig.5 also shows that for
four sets of initial conditions (denoted by the ×-symbols)
optimized sets popt ∈ R2 are found around κ ≈ 115 and
ǫ ≈ 0.0045 (denoted by the ◦-symbols); in the optimization
k = 15 and β = 0.4.

With κ = 100 and ǫ = 0.005, the results of time-series
simulation (upper part) and measurement on an industrial
wafer scanner (lower part) are shown in Fig.6. Given a
(scaled) acceleration set-point (dashed curve), the error re-
sponses are depicted for PID mode, PD mode, and integral
sliding mode control (SMC). Compared with PID control,
PD control induces less overshoot but yields steady-state
error. Integral sliding mode control (SMC) induces less
overshoot (and undershoot) but without having steady-
state error. This gives improved settling behavior in terms
of the considered wafer exchange problem.

6. CONCLUSIONS

To improve settling performance of high-precision motion
systems, a (modified) integral sliding mode control design
is considered. The design switches between PD mode,
which aims at less overshoot, and PID mode, which in-
duces no steady-state error. The switching parameters are
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Fig. 6. Time-series simulations and measurements in PID
mode, PD mode, and SMC (κ = 100 and ǫ = 0.005).

found by self-tuning. Herein a machine-in-the-loop opti-
mization scheme is used which incorporates, on the one
hand, model knowledge of the plant and the controller and,
on the other hand, servo error data containing the effect
of disturbances and plant uncertainty. The effectiveness of
the modified design and its tunings is demonstrated by
simulations and experimental results. Self-tuning in ex-
periment as well as the stability properties of the modified
design and optimization scheme will be addressed in future
work.
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