Header logo is hi

hi Rachael Burns
Rachael Burns (Project leader)
Ph.D. Student
hi Hasti Seifi
Hasti Seifi
Postdoctoral Researcher
hi Hyosang Lee
Hyosang Lee
Research Scientist
hi Robert Faulkner
Robert Faulkner
Research Engineer
hi Sophia Haass
Sophia Haass
Bachelor's Student Intern
3 results

2020


Tactile Textiles: An Assortment of Fabric-Based Tactile Sensors for Contact Force and Contact Location
Tactile Textiles: An Assortment of Fabric-Based Tactile Sensors for Contact Force and Contact Location

Burns, R. B., Thomas, N., Lee, H., Faulkner, R., Kuchenbecker, K. J.

Hands-on demonstration presented at EuroHaptics, Leiden, The Netherlands, September 2020, Rachael Bevill Burns, Neha Thomas, and Hyosang Lee contributed equally to this publication (misc)

Abstract
Fabric-based tactile sensors are promising for the construction of robotic skin due to their soft and flexible nature. Conductive fabric layers can be used to form piezoresistive structures that are sensitive to contact force and/or contact location. This demonstration showcases three diverse fabric-based tactile sensors we have created. The first detects dynamic tactile events anywhere within a region on a robot’s body. The second design measures the precise location at which a single low-force contact is applied. The third sensor uses electrical resistance tomography to output both the force and location of multiple simultaneous contacts applied across a surface.

Project Page Project Page [BibTex]

2020

Project Page Project Page [BibTex]


A Fabric-Based Sensing System for Recognizing Social Touch
A Fabric-Based Sensing System for Recognizing Social Touch

Burns, R. B., Lee, H., Seifi, H., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, Washington, DC, USA, March 2020 (misc)

Abstract
We present a fabric-based piezoresistive tactile sensor system designed to detect social touch gestures on a robot. The unique sensor design utilizes three layers of low-conductivity fabric sewn together on alternating edges to form an accordion pattern and secured between two outer high-conductivity layers. This five-layer design demonstrates a greater resistance range and better low-force sensitivity than previous designs that use one layer of low-conductivity fabric with or without a plastic mesh layer. An individual sensor from our system can presently identify six different communication gestures – squeezing, patting, scratching, poking, hand resting without movement, and no touch – with an average accuracy of 90%. A layer of foam can be added beneath the sensor to make a rigid robot more appealing for humans to touch without inhibiting the system’s ability to register social touch gestures.

Project Page [BibTex]

Project Page [BibTex]

2018


Designing a Haptic Empathetic Robot Animal for Children with Autism
Designing a Haptic Empathetic Robot Animal for Children with Autism

Burns, R., Kuchenbecker, K. J.

Workshop paper (4 pages) presented at the Robotics: Science and Systems Workshop on Robot-Mediated Autism Intervention: Hardware, Software and Curriculum, Pittsburgh, USA, June 2018 (misc)

Abstract
Children with autism often endure sensory overload, may be nonverbal, and have difficulty understanding and relaying emotions. These experiences result in heightened stress during social interaction. Animal-assisted intervention has been found to improve the behavior of children with autism during social interaction, but live animal companions are not always feasible. We are thus in the process of designing a robotic animal to mimic some successful characteristics of animal-assisted intervention while trying to improve on others. The over-arching hypothesis of this research is that an appropriately designed robot animal can reduce stress in children with autism and empower them to engage in social interaction.

link (url) Project Page [BibTex]

2018

link (url) Project Page [BibTex]